Experimentation on Online Retail Data using two clustering
Algorithms to discover distinct groups.

By Dayo Samuel, 2022

Abstract

The goal of this research is to use clustering analysis to identify distinct groups of customers in an online
retail database, with the purpose of creating targeted marketing campaigns. To achieve this, | will apply
two different clustering algorithms ancbmpare their results in order to make the best decision. The
scikitlearn implementation of ¥heans and DBSCAN will be used to determine the optimal number of
clusters through the elbow method. Additionally, I will utilize principal component analysi$ {®@8uce

the dimensionality of the data, allowing for the visualization of the clustering results on higher dimensional
datasets

Keywords: Clustering Analysis, Targeted Marketing, Principal Component Analysis

3.0 Introduction

Clustering is a datanalysis technique that involves grouping data points together based on their
similarity. This can be useful in many different contexts, including identifying different customer groups
with similar characteristics, dividing images into segments basedxeh features, and more. For instance,
a company might use clustering to group its customers into different segments based on their purchasing
habits, which can help them tailor marketing campaigns and increase sales. In image segmentation,
clustering algathms can be used to divide pixels into different groups based on characteristics like colour
and texture, which can be useful for tasks like object detection and image analysis

Ashishkumar et al (2014) explored ways to effectively analyse and segmgmtatasets, known
as big data, which often have a high volume and many dimensions. They used a data reduction technique
called RFM (Recency, Frequency, Monetary) analysis on a large dataset and found ways to optimize
clustering techniques for segmentitige data through data partitioning and parallelization. The
researchers also performed analysis on the segments of the data that resulted from the clustering
experiments and found that it is worthwhile to delve deeper into the segments to gain more sangbit
the behaviour of businesses.

Daging Chen et al (2012) conducted a study on retail data to help a business understand its
customers and improve its customeentric marketing efforts. Using the Recency, Frequency, and
Monetary model, the businesstsistomers were segmented into various groups using theekns
clustering algorithm and decision tree induction. The main characteristics of the consumers in each
segment were then identified. Based on these findings, a set of recommendations was priovided
business on how to implement consur@entric marketing strategies.

In 2019, Daging et al conducted an experimental study to compare different methods for predicting
customer profitability over time. Like other researchers, they used the RecEreiency, and Monetary
(RFM) model to measure customer profitability. At one point in the study, they useeiks clustering to
divide customers into high, medium, and low groups based on their RFM values. The RFM model was
chosen because it is simpledapasy to understand in practice.

1

In this work, the aim is to utilize clustering analysis to find distinct groups of customers in an online
retail database, in order to create targeted marketing programs. Two different clustering algorithms will be
used,and their results will be compared to make the most informed decision. The-kakit
implementation of Kmeans and DBSCAN will be used to determine the optimal number of clusters
through the elbow method. Additionally, principal component analysis YM@P,be applied to decrease
the dimensionality of the data, which will enable the visualization of the clustering results for higher
dimensional datasets.

3.1 Datasets

The Data used for the experimentation on online retail data using clusteringithlgsrgotten
from the UCI YCI Machine Learning Repository: Online Retail Datp Bkich was credited to Dr
Dagqing Chen, Director (Public Analytics group) as the source. The dataset is a transnational data set
which contains all the transactions occurring between 01/12/2010 and 09/12/2011 forkeakkdd and
registered norstore online retail. The company mairgglls unique albccasion gifts. Many customers
of the company are wholesalers. There are 11 variables (attributes) in the data set as shown in Table
2, and it contains all the transactions occurring in years mentioned. In this study, only 2011 trarssactio
generated are explored. Over that period, there were 18,291 valid transactions in total, associated with
some 4381 valid distinct UK postcodes.

Table 2 Variables in the customer transaction data set

InvoiceNo Invoice number. Nominal, adigit integral number uniquely assigned to
each transaction. If this code starts with letter 'c’, it indicates a cancellatic

StockCode Product (item) code. Nominal, adigit integral number uniquely assigned t
each distinct product.

Description Product (item) name. Nominal.

Quantity The quantities of each product (item) per transaction. Numeric.

InvoiceDate Invoice Date and time. Numeric, the day and time when each transactior
generated

UnitPrice Unit price. Numeric, Product price per unit in sterling.

CustomerID Customer number. Nominal, adigit integral number uniquely assigned to
each customer.

Country Country name. Nominal, the name of the country where each customer
resides.

3.2 Explanation and Preparation of dataset
Adequate preprocessing was conducted to address null values, Outliers, Negative values which are
not usual and duplicate with opposite signs. The dataset used waspazessed are:

1. Lots of nan values

https://archive.ics.uci.edu/ml/datasets/online+retail
https://archive.ics.uci.edu/ml/datasets/online+retail

2. The Quantity had negative values, which does not make sense

3. Lots of duplicate values with opposite signs around 50 of them were removed
4. Some missing data rows were discarded.

5. Since most of the data (about 96%) had been concentrated in the UnitPridddes$00, | found
better results excluding the values above it!

The data set has some important columns like the Product Name and based on the quantity sold and
unit price we wish to establish some important business decisions. The dataset provideel agplied
different clustering methods and results are summarized below

Dataset Preparation and Processing:

As the dataset contains records from 2 years of data 2010 and 2011. As part of the data analysis,
the analysis will be on only 2011 data. With Data Processing, the key indicators are to be extracted and
cleaned for the analysis. The dataset contains many n customer’s ids; howeyv
major role as part of the product classification so | would drop the record for the same. The following step:
are the processing carried out:

Extracting year from invoice date

The year 2011 data waxtracted using the invoice date, the unique customers and products code
checked. The dataset contains many null Customer Ids but since it will not play role as part of Product
Classification so will not be dropping records for the same. After extragétegfor the necessary time
period, the following insights were obtained: the top countries with the largest number of customers, the
month with the highest sales, and the product or stock code that contributes the most to sales. The
increasing sales montbver month suggest that retailers are expanding their businesses and boosting their
sales. Additionally, we checked the seasonality of sales for different stock codes month over month and
found that the DOT stock code product is consistently strong, atidig that it is not seasonal.

Data PreProcessing

Label encoding is a pq@ocessing step that | used to handle string values in my data. A label
encoder object is a tool that is able to understand and process word labels. In this case, | usgtd a lab
encoder object to pregoprocess my data by converting the string values to numerical labels. This is useful
because many machine learning algorithms are not able to directly process string values and require
numerical data as input. By converting the styivalues to numerical labels, | was able to apply these
algorithms more easily to my data. After identifying the important features for classification, | used
standard scaling to scale the data. | then checked the withister sum of squares (WCSS) othlithe
scaled and original data, as shown in Figure 1 and Figure 2. Standard scaling is a conpnocegsing
step that is used to transform the features of a dataset so that they have a mean of 0 and a standard
deviation of 1. This is useful becausermanachine learning algorithms are sensitive to the scale of the
input features and can perform poorly if the features have very different scales. By scaling the data, |
aimed to ensure that all of the features were on a similar scale and would be weightedly by the
machine learning algorithm. The WCSS is a measure of the compactness of the clusters in a clustering
algorithm and can be used to determine the optimal number of clusters. By comparing the WCSS on the
scaled and original data, | was ableste the impact of scaling on the clustering results.

1e6 The Elbow Method

250 1
225 1
200 1
175 1

150 f

WCSS

125 4
100 -
0.75 1
0.50

T T T T

2 4 6 8 10
Number of clusters

Figure 1 WCSS on Scaled Data

lell The Elbow Method

L Ll |

4 6 8 10
Number of clusters

Figure 2 WCSS on original data

3.3 Clustering Methodology

K-Means Clustering algorithm

K-means clustering is a popular clustering algorithm that groups data points into a specified number of
clusters (k) based on their similarity. The algorithm works by first initializing k centroids, which are points
representing the centre of each clustdie data points are then assigned to the cluster corresponding to
the nearest centroid. Next, the centroids are updated to the mean of the points in the corresponding
cluster. This process is repeated until the centroids no longer move or the desirédfieamvergence is
reached. The goal of the algorithm is to minimize the distance between the points in a cluster and the
corresponding centroid.Keans is a simple and effective algorithm that is widely used in a variety of
applications.

To calculag the kmeans clustering algorithm, we need to follow the below steps:
Initialize k centroids (randomly or using some heuristic)
Assign each data point to the closest centroid

Update the centroids to the mean of the points in the corresponding cluster

p ST ST SR

Repeat steps 2 and 3 until the centroids no longer move or the desired level of convergence is
reached

To calculate the distance between a data point and a centroid, we can use the Euclidean distance, which
defined as the square root of the sum of teguared differences between the coordinates of the two

points. For example, if we have a data point with coordinates (x1, y1) and a centroid with coordinates (x2,
y2), the Euclidean distance between the two points would be calculated as follows:

distance= sqrt((xx2)"2 + (yly2)"2)

Once we have calculated the distance between the data point and each centroid, we can assign the data
point to the cluster corresponding to the nearest centroid. After all of the data points have been assigned
to clusters, wecan update the centroids by taking the mean of the points in each cluster. This process is
then repeated until the centroids no longer move or the desired level of convergence is reached. The step
of the kMeans Clustering algorithm done on the dataset ashown below:

Experimentation using-Kieans

After initializing the cluster centroids, the memberships of each cluster in each of the 13 subsets
are calculated in parallel. This means that each cluster has members in each of the 13 subsets. The new
centroid of each cluster is then calculated based on all of the cluster members in all of the 13 subsets. Thi
parallel version of the #heans algorithm produces the same final set of clusters as the sequential version,
but with less processing time. Once theal clusters have been created, | will check the total records and
unique products in each cluster by combining the cluster results with the original data. The final number of
clusters can be visualized using seaborn count plots and scatterplots, ansteated in figures 3 and 4.

DBSCAN Clustering algorithm

DBSCAN (DensiBased Spatial Clustering of Applications with Noise) is a clustering algorithm that
groups data points into clusters based on their density. The algorithm works by first yaemti€ore

5

points” that have a high density of neighbouring points. These core points are then used to form
clusters. Points that are not part of any cluster are considered "noise" and are not included in the final
result.

DBSCAN has several advantages other clustering algorithms, such asreans. First, it does not
require the user to specify the number of clusters in advance. This is because the algorithm
automatically determines the number of clusters based on the density of the data. Second, \DBSCA
able to handle data with varying densities and can identify clusters of arbitrary shape.

To use the DBSCAN algorithm, the user must specify two parameters: Eps and MinPts. Eps is the
maximum distance that defines a neighbourhood around a data pbimPts is the minimum number
of points that must be in a neighbourhood for a point to be considered a core point. The algorithm
then uses these parameters to identify clusters and noise in the data.

Experimentation using DBSCAN
The DBSCAN algorithmtypically calculated using the following steps:

Initialize an empty list of clusters and an empty list of noise points.

For each data point, find all points within a distance Eps of the point (using a distance measure suc
as Euclidean distance).

A If the number of points within Eps of the point is greater than or equal to MinPts, the point is a core
point. Add it to a cluster and expand the cluster to include all points within Eps of the core point.

A If the number of points within Eps of the poisstless than MinPts, the point is a noise point. Add it
to the list of noise points.

A Repeat this process for each data point. When all points have been processed, the algorithm will
have identified all clusters and noise points in the data.

The DBSCAN algthm can be made more efficient by using techniques such as indexing. In this case,
the values of eps and min_samples were set to 0.3 and 10, respectively. These values determine the
behaviour of the algorithm by specifying the maximum distance betwaensamples for them to be
considered part of the same cluster (eps=0.3) and the minimum number of samples in a neighbourhood fc
a point to be considered a core point (min_samples=10). The values of eps and min_samples will affect tf
shape, size, and nureb of clusters identified by DBSCAN.

3.4 Results analysis and discussion

In this study, two algorithms were tested on large datasets, commonly referred to as "big data."
The percentage of null customer IDs in the dataset was 23%, and the origiadeédded to produce
clearer results on a WCCS plot compared to scaled data. However, the size of the data made it difficult to
plot a dendrogram. Despite these challenges, the algorithms were able to effectively process and analyse
the data.

As a resulbf the analysis, three clusters were identified in the dataset. The first cluster contained 1534
samples, the second cluster contained 1230 samples, and the third cluster contained 1230 samples. Thes

6

clusters were created by dividing the samples intoup®based on certain characteristics or features. The
samples within each cluster were more similar to each other than they were to samples in other clusters,
indicating the presence of distinct patterns or groups in the dataset. This suggests thatdhthalg were
successful in identifying meaningful patterns and relationships within the data.

200000 4

150000
=
=
=i
100000 -
50000 1
u_
0 1 2
Cluster
Figure 3 Clusters founded with Count plot
4000 1 Cluster
3500 1 ‘1’
@
3000 - o 2
E
5 25001 - a &
c $8 = 83 o8 285 sss 2,58 *288e°5s
% 2000 58 30335"59;“%;35* 353525 39‘53332
8 §‘:sesﬁ:oigigi?gau!i:eaﬁzohsi'g‘g!ga
x MR D 4 .89
§se5e T HHH TR LHTE
R N H IR H
A -4 .."3..::'. i o"g " :Oi e i <
1000 ! s’! .i o !:ﬁ !s‘i!' ’ !
e ° ° H
ok ‘!!!" R
L J
0.3330'!06 o.g. ° °
0 5 10 15 20 25 30 35

Country_num

Figure 4 Clusters founded with scatter plot

Conclusions

This study aimed to analyse and identify distinct groups within a dataset. The results showed that
the samples in each cluster are more similar to each other than they are to samples in other clusters. This
suggests that there are distinct patterns or gpsupresent in the dataset. In future work, it may be useful
to further classify the customers in the cluster with the highest number in order to identify theduiglty
customers within that group. Overall, the clustering analysis performed in this pradyded insight into
the relationships and patterns present in the dataset.

References

Ashishkumar Singh, Grace Rumantir, Annie South, and Blair Bethwaite. 2014. Clustering Experiments on
Big Transaction Data for Market Segmentation. In Proceedings of the 2014 International
Conference on Big Data Science and Computing (BigDataScienéessbt)jation for Computing
Machinery, New YorlNY, USA, Article 16+ https://doi.org/10.1145/2640087.2644161

Chen, Daging &uo, Kun & Li, Bo. (2019). Predicting Customer Profitability Dynamically over Time: An
Experimental Comparative Study.

https://doi.org/10.1145/2640087.2644161
https://doi.org/10.1145/2640087.2644161

Appendix One

(These screenshots depict the referenced procedures that were completed for Task 3. The source of the
information is a combination of seliritten notes and a Jupyter notebook.)

1. Dataset Preparation and Processing:
AExtracting year from invoice dat

Extracting Year from Date

i |df['year'] = df['InvoiceDate'].dt.year

df.head()
InvoiceNo StockCode Description Quantity InvoiceDate UnitPrice CustomerlD Country year
0 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 2010-12-01 08:26:00 255 17850.0 United Kingdom 2010
1 536365 71053 WHITE METAL LANTERN 6 2010-12-0108:26:00 3.39 17850.0 United Kingdom 2010
2 536365 844068 CREAM CUPID HEARTS COAT HANGER 8 2010-12-01 08:26:00 275 17850.0 United Kingdom 2010
3 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 2010-12-0108:26:00 3.39 17850.0 United Kingdom 2010
4 536365 84029E RED WOOLLY HOTTIE WHITE HEART. 6 2010-12-01 08:26:00 3.39 17850.0 United Kingdom 2010

i data = df[df['year']==2011]

: data.shape

(499428, 9)

A Unique Customers and Products/Stock Code

data['CustomerID'].nunique()

4244

data['StockCode' J.nunique()

3993

A Check for Null values in the dataset

data.isnull().sum()

InvoiceNo (%]
StockCode 0
Description 1329
Quantity 0
InvoiceDate 0
UnitPrice %]
CustomerID 119449
Country (%]
year (%]

dtype: inté4

A Top Countries with the greatest number of customers

Country Total_CustomerCount

35
14
13
10
30
23

32
26

United Kingdom
Germany
France

EIRE

Spain
Netherlands
Belgium
Switzerland
Portugal

Australia

Month having highest sales

month Total_Sales

10 11 1461756.250
9 10 1070704.670
8 9 1019687.622
4 5 723333.510
5 6 691123.120
2 3 683267.080
7 8 682680.510
6 7 681300.111
0 1 560000.260
1 2 498062.650

Which Product or Stock Code contributeanost of the sales

337342
8930
8052
7123
2458
2299
1974
1828
1360
1224

10

StockCode Total_Sales

3983 DOT 181574.29
1250 22423 137864.83
2489 47566 97095.24

3606 85123A 88815.54
3595 85099B 88383.68

1884 23084 66756.59
3986 POST 61844.64
2701 84879 54973.86

948 22086 54586.79
1324 22502 49908.61

A Check for seasonality in sales for different Stock Codes month over mo

| Total_MonthProductSales_Data[Total_MonthProductSales_Data[‘month']==12].head()

month StockCode Total_Sales

31865 12 DOT 19872.69
30756 12 23084 9618.01
29981 12 22086 6870.71
30230 12 22423 5902.92
29561 12 21137 5582.43

| Total_MonthProductSales_Data[Total_MonthProductSales_Data[‘month']==11].head()

month StockCode Total_Sales

29371 1 DOT 36905.40
27991 1 23084 34422.09
27136 1 22086 28883.04
29144 1 85123A 14119.80
27228 11 22197 13968.74

2. Data PreProcessing
A Label Encoding Data to handle String values

Import label encoder
from sklearn import preprocessing

Label_encoder object knows how to understand word labels.
label_encoder = preprocessing.LabelEncoder()

data['StockCode'] = data['StockCode'].apply(lambda x: str(x))

data['StockCode_num']= label_encoder.fit_transform(data['StockCode'])
data['Country_num']= label_encoder.fit_transform(data['Country'])

data.head()

InvoiceNo StockCode Description Quantity InvoiceDate UnitPrice CustomerlD Country year month Total_Amount StockCode_num Country_

JUMBO BAG)
42481 539993 22386 PINK 1 200 195 133130 | Umed 5o 1 19.5 1292
POLKADOT A o
BLOE 2011-01-04 United
42482 539993 21499 POLKADOT 25 sl 042 133130 . 2011 1 105 633
10:00:00 Kingdom
WRAP
BED 2011-01-04 United
42483 539993 21498 RETROSPOT 25 91 042 133130 2011 1 105 632
WRAP 10:00:00 Kingdom

A Extracting important features for classification

11

Since the objective is to find clusers for Stocks/Product which can be put on sale together so dropping
Customerld from the data and not using it as a feature while clustering

M data_df = data[['StockCode_num','Quantity','UnitPrice’, 'Country_num', 'month']]

M data_df.head()

50]: StockCode_num Quantity UnitPrice Country_num month
42481 1292 10 1.95 35 1
42482 633 25 0.42 35 1
42483 632 25 0.42 35 1
42484 1285 5 2.10 35 1
42485 172 10 1.25 35 1

M data_df.shape

51]: (499428, 5)

A Scaling Data

M from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
data_dfX = sc_X.fit_transform(data_df)

A CheckingVCSS on Scaled Data

import os
os.environ["OMP_NUM_THREADS"] = '1'
from sklearn.cluster import KMeans
wcss=[]
for i in range(1,11):
kmeans = KMeans(n_clusters=i, init='k-means++',random_state=42)
kmeans.fit(data_dfX)
wcss.append(kmeans.inertia_)
plt.plot(range(1,11),wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS")
plt.show()

A Checking WCSS on original data

12

import os
os.environ["OMP_NUM_THREADS"] = '1°
from sklearn.cluster import KMeans
wcss=[]
for i in range(1,11):
kmeans = KMeans(n_clusters=i, init='k-means++',random_state=42)
kmeans.fit(data_df)
wcss.append(kmeans.inertia)
plt.plot(range(1,11),wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS")
plt.show()

3. Experimentation using-Keans
AApplying Kmeans Classification

implement kmeans
num_clusters = 3
km = KMeans(n_clusters=num_clusters)

km.fit(data_df)
clusters = km.labels_.tolist()

label = km.predict(data_df)

13

ACheck on the final Clusters created

ReviewsClassification = { 'Cluster': clusters}
frame = pd.DataFrame(ReviewsClassification)

frame

Cluster

0 2

1 1

2 1

3 2

4 1
499423 2
499424 2
499425 2
499426 2
499427 1

499428 rows x 1 columns

data.shape

(499428, 13)

ACombining cluster results formed with original data

{ final_results = pd.concat([data,frame],axis=1)
final_results.head()

" zeNo StockCode Description Quantity InvoiceDate UnitPrice CustomerlD Country year month Total_Amount StockCode_num Country_num Cluster

JUMBO BAG

2011-01-04 United

9993 22386 PINK 10 ik 1.95 133130 . 2011 1 195 1292 35 2
POLKADOT 10:00:00 Kingdom
BLUE .
9993 21499 POLKADOT o5 20110104 0.42 133130 United 5544 1 105 633 35 1
10:00:00 Kingdom
WRAP
RED 2011-01-04 United
9993 21498 RETROSPOT 25 e 042 133130 | United 504 1 10.5 632 35 1
10:00:00 Kingdom
WRAP
RECYCLING :
9993 22379 BAG 5 201338-.83 2.10 13313.0 Ki;”gfﬁ 2011 1 105 1285 35 2
RETROSPOT AR 9
RED
RETROSPOT 2011-01-04 United
9993 20749, FELROEESN IOl s 1.25 133130 et 2011 1 125 172 35 1
BAG
4 »

ATotal Records ieach cluster
| 'sns.countplot(final_results['Cluster'])

<AxesSubplot:xlabel="'Cluster', ylabel='count'>

14

ATotal Unique Product in Each Cluster

final_results.groupby("Cluster")['StockCode'].nunique()

Cluster

(%] 1534
1 1231
2 1229

Name: StockCode, dtype: int64

ACluster Visualization

sns.scatterplot(x=final_results['Country_num'],y=final_results['StockCode_num'],hue=final_results['Cluster'])

<AxesSubplot:xlabel="Country_num', ylabel='StockCode_num'>

4. Experimentation using DBSCAN

DBSCAN

import matplotlib.pyplot as plt

import numpy as np

from sklearn.cluster import DBSCAN

from sklearn import metrics

#from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler

from sklearn import datasets

Load dota in X

db = DBSCAN({eps=€.3, min_samples=18).fit(data_df)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True

labels = db.labels_

Number of clusters in labels, ignoring noise if present
n_clusters_ = len{set(labels)) - (1 if -1 in labels else @)

print(labels)

[e 1 2...-1-1-1]

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps=8.25, min_samples=9)
y_dbscan = dbscan.fit_predict(data_df)

y_dbscan

array([e, 1, 2, ..., -1, -1, -1], dtype=intes)

15

16

